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Cuarrer V. On Solenoidal and Lamellar Distributions of Magnetism.

65. IN the course of some researches upon inverse problems regarding distributions
of magnetism, and upon the comparison of electro-magnets and common magnets, I
have found it extremely convenient to make use of definite terms to express certain
distributions of magnetism and forms of magnetized matter possessing remarkable

properties. The use of such terms will be of still greater consequence in describing

the results of these researches, and therefore, before proceeding to do so, I shall give
definitions of the terms which I have adopted, and explain briefly the principal pro-
perties of the magnetic distributions to which they are applied. The remainder of
this chapter will be devoted to three new methods of analysing the expressions for
the resultant force of a magnet at any point, suggested by the consideration of these
special forms of magnetic distribution. A Mathematical Theory of Electro-Magnets,
and Inverse Problems regarding magnetic distributions, are the subjects of papers
which I hope to be able to lay before the Royal Society on a subsequent occasion.

66. Definitions and explanations regarding Magnetic Solenoids.

(1.) A magnetic solenoid* is an infinitely thin bar of any form, longitudinally
magnetized with an intensity varying inversely as the area of the normal section in
different parts.

The constant product of the intensity of magnetization into the area of the normal
section, is called the magnetic strength, or sometimes simply the strength of the
solenoid. Hence the magnetic moment of any straight portion, or of an infinitely
small portion of a curved solenoid, is equal to the product of the magnetic strength
into the length of the portion.

(2.) A number of magnetic solenoids of different lengths may be put together so

* This term (from cw\jv, e tube,) is suggested by the term * electro-dynamic solenoid  applied by AMPERE
to a certain tube-like arrangement of galvanic circuits which produces precisely the same external magnetic
effect as is produced by ordinary magnetism distributed in the manner defined in the text. The especial ap-
propriateness of the term to the magnetic distribution is manifest from the relation indicated in the foot-note
on § 76 below, between the intensity and direction of magnetization in a solenoid, and the velocity and direc-
tion of motion. of a liquid flowing through a tube of constant or varying section.
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270 PROF. W. THOMSON ON THE MATHEMATICAL THEORY OF MAGNETISM.

as to constitute what is, as far as regards magnetic action, equivalent to a single
infinitely thin bar of any form, longitudinally magnetized with an intensity varying
arbitrarily from one end of the bar to the other. Hence such a magnet may be
called a complex magnetic solenoid.

The magnetic strength of a complex solenoid is not.uniform, but varies from one
part to another.

(3.) An infinitely thin closed ung, magnetized in the manner descnbed in (1.), is
called a closed magnetic solenoid.

67. Definitions and explanations regarding Magnetic Shells.

(1.) A magnetic shell is an infinitely thin sheet of any form, normally magnetized
with an intensity varying inversely as the thickness in different parts.

The constant product of the intensity of magnetization into the thickness is
called the magnetic strength, or sometimes simply the strength of the shell. Hence
the magnetic moment of any plane portion, or of an infinitely small portion of a
curved magnetic shell, is equal to the product of the magnetic strength, into the
area of the portion. '

(2.) A number of magnetic shells of different areas may be put together so as to
constitute what is, as far as regards magnetic action, equivalent to a single infinitely
thin sheet of any form, normally magnetized with an intensity varying arbitrarily
over the whole sheet. Hence such a magnet may be called a complex magnetic
shell.

The magnetic strength of a complex shell is not uniform, but varies from one part
to another.

(3.) An infinitely thin sheet, of which the two sides are closed surfaces, is called a
closed magnetic shell.

68. Solenoidal and Lamellar Distributions of Magnetism.—If a finite magnet of
any form be capable of division into an infinite number of solenoids which are either
closed or have their ends in the bounding surface, the distribution of magnetism in
it is said to be solenoidal, and the substance is said to be solenoidally magnetized.

If a finite magnet of any form be capable of division into an infinite number of
magnetic shells which are either closed or have their edges in the bounding surface,
the distribution of magnetism in it is said to be lamellar*, and the substance is said,
to be lamellarly magnetized.
 69. Complex Lamellar Distributions of Magnetzsm —If a ﬁnlte magnet of any
form be capable of division into an infinite number of complex magnetic shells, it is
said to possess a complex lamellar distribution of magnetism.

70. Complex Solenoidal Distributions of Magnetism.—Since, by cutting it along

# The term lamellar, adopted for want of a better, is preferred. to *“laminated ”’; since this might be objected
to as rather meaning “ composed of plates,” than composed of shells, whether plane or curved, and is besides

too much associated with a mechanical structure such as that of slate or mica, to be a convenient term for the
magnetic distributions defined in the text.
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lines of magnetization, every magnet of finite dimensions may be divided into an
infinite number of longitudinally magnetized infinitely thin bars or rings, any dis-
tribution of magnetism which is not solenoidal might be called a complex solenoidal
distribution ; but no advantage is obtained by the use of this expression, which.is
only alluded to here, on account of the analogy with the subject of the precedmg
definition. :

71. .Proe.—The action of a magnetic solenoid is the same as if a quantity of positive
or northern imaginary magnetic matter numerically equal to its magnetic strength,
were placed at one end, and an equal absolute quantity of negative or southern matter
at the other end.

The truth of this proposition follows at once from the investigation of Chap. III.
§§ 36, 37, 38.

Cor. 1.—The action of a magnetic solenoid is independent of its form, and depends
solely on its strength and the positions of its extremities.

Cor. 2.—A closed solenoid exerts no action on any other magnet

Cor. 3.—The “ resultant force” (defined in Chap. IV. § 49) at any point in the sub-
stance of a closed magnetic solenoid vanishes. :

72. Proe.—If i be the intensity of magnetization, and o the area of f/ze normal section
at any point P, at a distance s from one extremity of a complex solenoid, and if [iw]
and {iw} denote the values of the product of these quantities at the extremity from
which s is measured, and at the other extremity respectively ; the magnetic action will
be the same as if there were a distribution of imaginary magnetic matter, through the
length of the bar of which the quantity in an infinitely small portion ds, of the length
at the point P, would be —-i((;—g—)*ds, and accumulations of quantities equal to — [iw] and
{iw} respectively at the two extremities.

The truth of this proposition follows immediately from the conclusions of Chap. III.
§ 38.

73, Prop.—The potential of a magnetic shell at any point is equal to the solid angle
whzch it subtends at that point multiplied by its magnetic strength*.

Let dS denote the area of an infinitely small element of the shell, A the distance
of this element from the point P, at which the potential is considered, and 4 the
angle between this line, and a normal to the shell drawn through the north polar

-'de of dS. Then if A denote the magnetic strength of the shell, the magnetic moment
of the element dS will be A dS, and (§ 54.) the potential due to it at P will be

AdS . cos 9
TTAZ
* This theorem is due to Gauss (see his paper * On the General Theory of Terrestrial Magnetism,” § 38;
of whicki a translation is published in TavrLow’s Scientific Memoirs, vol. ii.). AmpEre’s well-known theorem,
referred to by Gauss, that a closed galvanic circuit produces the same magnetic effect as a magnetic shell of
any form having the circuit for its edge, implies obviously the truth of the first part of Cor. 2 below.
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Now @—gﬁ is the solid angle subtended at P by the element dS, and therefore the

potential due to any infinitely small element is equal to the product of its magnetic
strength, into the solid angle which its area subtends at P. But the potential due to
the whole is equal to the sum of the potentials due to the parts, and the strength is
the same for all the parts. Hence the potential due to the whole shell is equal to
the product of its strength into the sum of the solid angles which all its parts, or
the solid angle which the whole, subtends at P.

. dS.cosd . . . .
Cor. 1.—The expression ACQO 27, which occurred in the preceding demonstration,

being positive or negative according as 4 is acute or obtuse, it appears that the solid
angles subtended by different parts of the shell at P must be considered as positive
or negative according as their north polar or their south polar sides are towards this
point.

Cor. 2.—The potential at any point due to a magnetic shell is independent of
the form of the shell itself, and depends solely on its bounding line or edge, sub-
ject to an ambiguity, the nature of which is made clear by the following state-
ment :— :

If two shells of equal magnetic strength, 2, have a common boundary, and if the
north polar side of one, and the south polar side of the other be towards the enclosed
space, the potentials due to them at any external point will be equal ; and the poten-
tial at any point in the enclosed space, due to that one of which the northern polarity
is on the inside, will exceed the potential due to the other by the constant 4.

Cor. 3.—Of two points infinitely near one another on the two sides of a magnetic
shell, but not infinitely near its edge, the potential at that one which is on the north
polar side exceeds the potential at the other by the constant 47\,

Cor. 4.—The potential of a closed magnetic shell of strength A, with its northern
polarity on the inside, is 4#2, for all points in the enclosed space, and 0 for all ex-
ternal points; and for points in the magnetized substance it varies continuously from
the inside, where it is 472 to the outside, where it is 0.

Cor. 5.—A closed magnetic shell exerts no force on any other magnet.

Cor. 6.—The “resultant force” (§ 49.) at any point in the substance of a closed

» . . 4mx . «ap s . i
magnetic shell is equal to —;", if 7 be the thickness, or to 44, if i be the intensity of

magnetization of the shell in the neighbourhood of the point, and is in the direction
of a normal drawn from the point through the south polar side of the shell.

Cor. 7.—If the intensity of magnetization of an open shell be finite, the resultant
force at any external point not infinitely near the edge is infinitely small ; but the
force at any point in the substance not infinitely near the edge is finite, and is equal
to 4wi, if ¢ be the intensity of the magnetization in the neighbourhood of the point,
and is in the direction of a normal through the south polar side.
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74. Prop.—A distribution of magnetism expressed by {(, B3, v) at (x, y, 2)}* is sole-
noidal if, and is not solenoidal unless d—-l— + '

The condition that a given dlstrlbutlon of magnetism, in a substance of finite
dimensions, may be solenoidal, is readily deduced from the investigations of § 42,
by means of the propositions of §§ 71 and 72. For, if the distribution of magnetism
be solenoidal, the imaginary magnetic matter by which the polarity of the whole
magnet may be represented will be situated at the ends of the solenoids, according to
§ 71, and therefore (§ 68.) will be spread over the bounding surface. On the other
hand, if the distribution be not solenoidal, that is, if the magnet be divisible into
solenoids, of which some, if not all, are complex ; there will, according to § 72, be an
internal distribution of imaginary magnetic matter in the representation of the pola-
rity of the whole magnet. Hence it follows from § 42, that if «, 8, ¥ denote the
components of the intensity of magnetization at any internal point (z,y, z), the
equation

dx++ N ¢

expresses that the distribution of magnetism is solenoidal-.
75. Prop.— A distribution of magnetism {(a,[3, v) at (%, y, z)} is lamellar if, and is
S 14 y

* Where a, 3, v, which may be called the components, parallel to the axes of coordinates, of the magnetiza-
tion at (, y, 2), denote respectively the products of the intensity into the direction cosines of the magnetization.

+ The analogy between the circumstances of this expression and those of the cinematical condition ex-
pressed by * the equation of continuity” to which the motion of a homogeneous incompressible fluid is subject,
is so obvious that it is scarcely necessary to point it out. When an incompressible fluid flows through a tube
of variable infinitely small section, the velocity (or in reality the mean velocity) in any part is inversely pro-
portional to the area of the section. Hence the intensity and direction of magnetization, in a solenoid, accord-
ing to the definition, are subject to the same law as the mean fluid velocity in a tube with an incompressible
fluid flowing through it. Again, if any finite portion of a mass of incompressible fluid in motion be at any
instant divided into an infinite number of solenoids (that is, tube-like parts), by following the lines of motion
the velomty in any one of these parts will at different points of it be inversely proportional to the area of its
section. Hence the intensity and direction of magnetization ina solenoidal distribution of magnetism, accord-
ing to the definition, are.subject to the same condition as the fluid-velocity and its direction, at any point in
an incompressible fluid in motion. It may be remarked, that by making an investigation on the plan of § 42.
to express merely the condition that there may be no internal distribution of imaginary magnetic matter, the

Za—i—flﬂ 0;7 0 is obtained in a manner precisely similar to a mode of investigating the equation of
Y

continuity for an incompressible fluid, now well known, which is given in Dumamer’s Cours de Mécanique,
and in the Cambridge and Dublin Mathematical Journal, vol. ii. p. 282. 'The following very remarkable pro-

equation

position is an immediate consequence of the proposition that *“a closed solenoid exerts no action on any other
magnet ”’ (§ 71, Cor. 2 above), in virtue of the analogy here indicated.

«“If a closed vessel of any internal shape, be completely filled with an incompressible fluid, the fluid set into
any possible state of motion, and the vessel held at rest; and if a solid mass of steel of the same shape as the
space within the vessel be magnetized at each point with an intensity proportional and in a direction corre-
sponding to the velocity and direction of the motion at the corresponding point of the fluid at any instant; the
magnet thus formed will exercise no force on any external magnet.”

MDCCCLI. 2N
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not lamellar unless edx-+Bdy+ydz is the differential of a function of three independent
variables.

Let +J be a variable which has a certain value for each of the series of surfaces by
which the magnet may be divided into magnetic shells; so that, if «/ be considered
as a function of «, y, 2, any one of these surfaces will be represented by the equation

Y, y,2)=IT. . . . . . . . . .. . (a);
and the entire series will be obtained by giving the parameter, [1, successively a series
of values each greater than that which precedes it by an infinitely small amount.
According to the definition of a magnetic shell (§ 67.), the lines of magnetization
must cut these surfaces orthogonally; and hence, since «, 3, ¥ denote quantities
proportional to the direction cosines of the magnetization at any point, we must have

a B
TW-—W"""""""(M'
de  dy  dz

Let us consider the magnetic shell between two of the consecutive surfaces correspond-
ing to values of the parameter of which the infinitely small difference is w. The
thickness of this shell at any point («, y, 2) will be

k)

WM
dx2+3? W}

Now the product of the intensity of magnetization, into the thickness of the shell,

must be constant for all points of the same shell ; and hence, since = is constant, and

since @, 3,y denote quantities such that («2+4324-2)? is the intensity of magnetization
at any point, we must have

(@®+ B +9%)1
dy? | dy? d\lﬂ =F)
( prRi: dy? dz‘")

(©)s

where F() denotes a quantity which is constant when + is constant. This equation,
and the two equations (b), express all the conditions required to make the given

distribution lamellar. By combining them we obtain the following three, which are
equivalent to them :—

a=F ()% B:F(x}/)%, y=F)%,

and hence, if f'F(«)dy be denoted by ¢, we have
dp  5_d¢ de
=g 6"3—3/’7=¢7§’ R ¢ I B
where ¢ is some function of #, yand z. Hence the condition that a magnetic distri-

bution («, 8, ¥) may be lamellar, is simply that adr+3dy+-ydz must be the differen-
tial of a function of three independent variables. The equations to express this are
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obtained in their simplest forms by eliminating the arbitrary function ¢ by differentia-
tion; and are of course:

g dy _ B

E—@_O

dy da
€ 1§
de . dB

dy~ du OJ

Cor.—It follows from the first part of the preceding investigation that equations
(b.) express that the distribution, if not lamellar, is complex-lamellar. By elimi-
nating the arbitrary function 4 from those equations, (which merely express that
adr+4Pdy-+ydx is integrable by a factor,) we obtain the well-known equation

u(ﬁé_g_;/) +p<%_j_;‘)+7(§;i_j—§)=o L avy,
as the simplest expression of the condition that «, 3,y must satisfy, in order that the
distribution which they represent may be complex-lamellar; and we also conclude
that if this equation be satisfied the distribution must be complex-lamellar, unless
each term of the first number vanishes by equations (III.) being satisfied, in which
case the distribution is, as we have seen, lamellar.

76. The resultant force at any point external to a lamellarly-magnetized magnet
will, according to § 73 {Cors. 2 and 4.), depend solely upon the edges of the shells
into which it may be divided by surfaces perpendicular to the lines of magnetization
(or the bands into which those surfaces cut the bounding surface), and not at all on
the forms of these shells, within the bounding surface, nor upon any closed shells of
which part of the magnet may consist; and the resultant force at any internal point
may (§ 73. Cors. 2, 4, and 7,) be obtained by compounding a force depending solely
on those edges, with a force in the direction contrary to that of the magnetization of
the substance at the point, and equal to the product of 4 into the intensity of the
magnetization. For either an external or an internal point, the resultant force may be
expressed by means of a potential, according to § 49 ; and the value of this potential
may be obtained by means of the theorems of § 73, in the following manner.

Let us suppose all the open shells, that is to say all the shells cut by the bounding
surface of the given magnet, to be removed, and an imaginary series of shells
having the same edges, and the same magnetic strengths, and coinciding with the
bounding surface, substituted for them; and, for the sake of definiteness, let us
suppose each of these shells to have its north polar side outwards, and to occupy a
part of the surface for which the value of ¢ is greater than at its edge. The whole
surface will thus be occupied by a series of superimposed magnetic shells, constituting
a complex magnetic shell which will produce a potential at any external point the
same as that due to the whole of the given magnet; and it will produce a potential
at any internal point, which, together with the potential due to the closed shells which

2N2
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surround it, if there are any, and (§ 73, Cor. 2.) together with the product of 47 into
the sum of the strengths of any open shells which have it between them and their
superficial substitutes, will be the potential due to the whole of the given magnet at
this point.

Now if dp denote the difference between the values of ¢ at two consecutive sur-
faces of the series, by which we may conceive the whole magnet to be divided
into shells, it follows, from the investigation of § 75, that the magnetic strength of
the shell is equal to dp. Hence, if A denote the least value of ¢ at any part of the
bounding surface, and ¢ be supposed to correspond to a point in the surface, the
strength of the complex magnetic shell, found by adding the strengths of all the
shells of the imaginary series superimposed at this point, will be p—A ; and if P be
an internal point, and the value of ¢ at it be denoted by (¢), the sum of the strengths
of all the shells between that which passes through P and that which corresponds to
A, will be (¢)— A, from which it may be demonstrated *, that, whether (¢) be > or <A,
and whatever be the nature of the shells, whether all open or some open and some
closed, the quantity to be added to the potential due to the imaginary complex shell
coinciding with the surface of the magnet to find the actual potential at P, is

47{(p)— A}. Now, from what we have seen above, it follows that the potential at any
point P, due to an element, dS, of this complex shell is M%zads, if ¢ denote the angle

which an external normal, or a normal through the north polar side of dS, makes
with a line drawn from dS to P, and A the length of this line. Hence the total poten-
tial at P, due to the whole complex shell, is equal to

f {¢+A}cos GdS
AQ

in which the integration includes the whole bounding surface of the magnet. Hence,
if V denote the potential at P, we have the following expression, according as P is

external or internal,—
{p— A}cos 6dS
V) iem A s

v=//" “"A}"P”"’S+4w{(¢)——A}

These expressions may be simplified if we remark that, for any external point,

/fcos édS
and that, for any internal point,
/“/’cos 84S
AT =4

(since 4 is the angle between the line A and the external normal through dS). We

or

* See second foot-note on § 48 above, and Cors. 2, 3, § 76, below.
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thus obtain, for an external point,

v /‘/¢ cos 6dS s | l

v=/71%" cosaf_+4 @), J

Cor. 1.—The potentials at two points infinitely near one another, even if one be in
the magnetized substance and the other be external, differ infinitely little; for the

val‘ue of 6
/]‘cp cgs dS

at a point infinitely near the surface and within it, is found by adding —4=() to the
value of the same expression at an external point infinitely near the former.

Cor, 2.—If the value of
/‘ ¢ . cos 8dS
AT

be denoted by — Q for any internal point, «, y, 2 ; and if (), (8), (y) denote the com-
ponents of the intensity of magnetization, and X, Y, Z the components of the resultant
magnetic force at this point, (that is, according to the definition in the second foot-
note on § 48, the force at a point in an infinitely small crevass tangential to the lines
of magnetization at z, y, z) we have

and for an internal point, V)

iV dQ 7
X:—%:‘:%—ﬂlw(a)
avV  dQ

el
Il
|
|
|
|
|
1N
3
C)

(VL)

The resultant of the partial components, —47z(a), —47(8), — 47(y),is a force equal

to 47(i) acting in a direction contrary to that of magnetization, and this, com-
pounded with the resultant of

dQ dQ dQ
dx’ Ay’ dz’
which depends solely on the edges of the shells, gives the total resultant force at the
internal point. We thus see precisely how the statements made at the commence-
ment of § 76. are fulfilled.
Cor. 3. It is obvious, by the preceding investigation, that
dQ 4dQ dQ
dz’ dy’ dz
are the components of the force at a point in an infinitely small crevass perpendicular
to the lines of magnetization at «, y, =
77. An analytical demonstration of these expressions may be obtained by a partial
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integration of the general expression for the potential in the case of a lamellar dis-
tribution, in the following manner :—

In equation (5) of § 55, which, as was remarked in the foot-note, expresses the

. . . dp dp d .
potential for any point, whether internal or external, let Zi%’ E%’ and —% be substituted

in place of i/, im, and in respectively ; and, for the sake of brevity, let

{E=2)'+(1—y)"+(Z—=)}

1
-
be denoted by A: then observing that %‘f:ﬁ ,and so for the similar terms ; we have
L "y
de “A d¢ A dp A
V= f/f(dx Tty &t dz)dxdydz N O

Dividing the second member into three terms, integrating the first by parts com-

. . i .
mencing with the factor Iﬁ dz, and so for the other terms; we obtain

dl 1 dQ dQ dQ '
v=| /ﬁ( e dydz+d dxdr+— dzd:cdy)] ~/[//e ( =N dy2+ T )dxdydz ()

where the brackets which inclose the double integral denote that it has reference to

the surface of the body. Now, for any set of values of x, y, , for which —z— is finite,

we have, as is well known,

1 1 1

2~ 2 2

d x d A d A
W+W+W=O;"""""(C)
and consequently, if the point £, 4, "'is not in the space included by the triple integral
in the expression for V, each element of this integral, and therefore also the whole,

vanishes. In the contrary case, the simultaneous values x=3%, y=7, and 3= will
be included in the limits of integration, and, as these values make = infinitely great,

the equation (c) will fail for one element of the integral, although it still holds for
all elements corresponding to points at a finite distance from (%, 7, {). Hence, if (¢)
denote the value assumed by the function ¢ at this point, we have

dQ d21

21_ dQ 42~ 2
ffﬁ( taetas dzg)dmdydz—(¢z/‘ A (,M ot M)dmdydz

where the limits of integration may correspond to any surface whatever which com-
pletely surrounds the point (£, 4, ). Now it is easily proved (as is well known) that
the value of

1

de de d2
f/f( P +—= e + dz tvz)dxd:’/dz
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is —4m, when (&, #, {) is included in the limits of integration ; and therefore the value
of the triple integral, in the expression for V, is —4#(¢). Hence, according as the
point (£, #, {) is external or internal with reference to the magnet, the potential at it
is given by the expressions

A )
) v=[_[fs. ( dyds+— dedo-+ dxdy>]

dl dl

or (2.)* V_[/ﬁ( dydz+ Adzdx—l—d dxdy)]—l—zlz’(qb)

These agree with the expressions obtained above in § 76; the same double integral
with reference to the surface being here expressed symmetrically by means of
- rectangular coordinates.

78. The value of ¢ at any point in the surface of the magnet, which, as appears from
- the preceding investigations, is all that is necessary for determining the potential due
to a lamellar magnet at any point not contained in the magnetized substance, may,
according to well-known principles, be determined by integration, if the tangential
component of the magnetization at every point of the magnet infinitely near its sur-
face be given. It appears therefore that, if it be known that a magnet is lamellarly
magnetized throughout its interior, it is sufficient to have given the tangential com-
ponent of its magnetization at every point infinitely near the surface or to have
enough of data for determining it, without any further specification regarding the
interior distribution than that it is lamellar, to enable us to determine completely
its external magnetic action. This conclusion is analogous to a conclusion which
may be drawn, for the case of a solenoidal distribution, from the expression obtained
in § 51, for the potential of a magnet of any kind. For, from this expression, we have,
according to § 74, the following in the case of a solenoidal distribution :—

v=[ ffletmbtm)dB] L (v,

from which we conclude, that without farther data regarding the interior distribution
than that it is solenoidal, it is sufficient to have given the normal component of the
magnetization at every point infinitely near the surface to enable us to determine the
external magnetic action. Yet, although analogous conclusions are thus drawn from
‘these two formula, the formulae themselves are not analogous, as the former (that of
§ 51) is applicable to all distributions, whether solenoidal or not,and shows precisely
how the resultant magnetic action will in general depend on the interior distribution
besides the normal magnetization near the surface, according to the deviation from

. (VIL)

* It may be proved that the force derived from a potential having the same expression (VIL.) (1.) as for ex-
ternal points, is, for any internal point, the force at a point within an infinitely small crevass perpendicular to
the lines of magnetization; as it is easily shown that the differential coefficients of 4w(g) are the rectangular
components of the force at such a point due to the free contrary polarities on the two sides of the crevass.
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being solenoidal which it presents ; while the formulee of § 76. merely expresses a fact
with reference to lamellar distributions, and being only applicable to lamellar distribu-
tions, do not indicate the effect of a deviation from being lamellar, in a distribution
of a general form. Certain considerations regarding the comparison between common
magnets and electro-magnets, suggested by AmpEre’s theorem that the magnetic
action of a closed galvanic circuit is the same as that of a “ magnetic shell” (as de-
fined in § 67.) of any form having its edge coincident with the circuit, led me to a
synthetical investigation of a distribution of galvanism through the interior and at
the surface of a magnet magnetized in any arbitrary manner, from which I deduced
formulee, for the resultant force at any external or internal point, giving the desired
indication regarding effect of a deviation from being lamellar, on expressions which,
for lamellar distributions, depend solely on the tangential component of magnetiza-
tion at points infinitely near the surface. These galvanic elements throughout the
body, from the action of which the resultant force at any external point is com-
pounded, produce effects which are not separately expressible by means of a poten-
tial, and therefore, although of course when the three components X, Y, Z of the total
resultant force at any point (2, y, 2) have been obtained, they will be found to be
such that Xdz+Ydy-+Zdz is a complete differential, the separate infinitely small ele-
ments of which these forces are compounded by integration with reference to the
elements of the magnet, do not separately satisfy such a condition. Hence the in-
vestigation does not lead to an expression for the potential ; but by means of it the
following expressions for the three components of the force at any external point,
or on a point within any infinitely small crevass perpendicular to the lines of mag-
netization, have been obtained* :—

X= /]fdxdydz{"gf Z—;—%ﬁ B %-——) WiA { Yima— 18)— 5y~ na)}dS
V= fandyas (55 (=) =5 (=) | = LA (5 ) 5 1)

2= [ iwdyie| S5 (= 8) =5 (i) = LS {5 o= ne) = ) s

The investigation by which I originally obtained these expressions is, with reference
to galvanism, precisely analogous to the investigation in § 42. with reference to
imaginary magnetic matter. It cannot be given without explanations regarding the
elements of electro-magnetism which would exceed the limits of the present communi-
cation ; but when I had once discovered the formulée I had no difficulty in working
out the subjoined analytical demonstration of them for the case of an external point,

* 'The expression Xdz+ Ydy+ Zdz will not be a complete differential for internal points, unless the distribu-
tion of magnetism be lamellar, since, for any internal point, X, Y, Z differ from the rectangular components of
the resultant force, as defined in § 48, by the quantities 4wa, 473, 4y, respectively, and since (§ 52) the re-
sultant force, for all points, whether internal or external, is derivable from a potential.

>(

IX.
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which is precisely analogous to PoissoN’s original investigation (shown in § 56. of
this paper) of the formula of § 51.

79. Equations (3) and (4) of §§ 51. and 52, lead to expressions for the components
of the resultant force at any point in the neighbourhood of a magnet. Taking only
one of them, (since the three expressions are symmetrical) that for X for instance,

we have
P L

d A A TAL

X=—%f/fdxdydz a%—l-ﬁ@-—l—ngj
Now if the factor of dxdydx in the second member of this equation be differentiated
with reference to £ an expression is obtained which does not become infinitely great
for any values ¢. z, y, 2 included within the limits of integration, since the point

(& 2, Q) is considered to be external in the present investigation. Hence the differen-
tiation with reference to £ may be performed under the integral sign; and, since

1 1
54
dE — " dz’
we thus obtain dg 1 Q 1 Q 1

_f./../dmdydz a7 +B dy? +7d29

Now, for all points included within the limits of integration, we have, from LapPLACE’s
well-known equation,

1 1 1
2. 2. 2__
N S
&=\ G TE )
and therefore 2L el 2l el

A A A A
_ffﬁmdjd‘ - dy +dzg +dedy+7dxdz :

* If the point (£, ¥, ) be either within the magnet, or infinitely near it, the factor of dzdydz in this integral
is infinitely great for values of (2, y, 2) included within the limits of integration; and it may be demonstrated
that the value of a part of the integral corresponding to any infinitely small portion of the magnet infinitely
near the point (%, ¥, §) is in general finite, and that it depends on the form of this portion, on its position with
reference to the line of magnetization through (£, %, ), and on the proportions of the distances of its different
parts from this point. It follows that if the point £, %, ¢ be internal, and if a portion of the magnet round it
be omitted from the integral, the value of the integral will be affected by the form of the omitted portion,
however small its dimensions may be, and consequently the complete integral has no determinate value if the
point (£, ¥, {) be internal. Hence, although as we have seen above (§§ 51, 51.),

l dl l‘l
dE// d.z'dydz a~+{3d§ deJ

has in all cases a determinate value, which, by the definition (§ 48.), is called the component parallel to OX of
the resultant force at (£, v, ), the expression

JLolal
- /“/“/‘dxdydzdg“a +,3d—+ Z?J

has no meaning when (£, %, ¢) is in the substance of the magnet.
MDCCCLI. 20
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Dividing the second member into four terms, and applying an obvious plOCCSS of
integration by parts, we deduce

{ a5 dx i }
X= l: Vi dmdz ooy dady+ B, dydatoyz; dyd
l dl dl dl
sl e 2 9 )
Modifying the double integral by assuming, in its different terms,

dydz=1dS ; dzdr=mdS; dxdy=ndS,
and altering the order of all the terms, we obtain

X= [/ dudyas ld =_B)- s (2 flf} [f/‘ me lﬁ)—7<lv—nw>}d8]-

This expression, when the indicated differentiations are actually performed upon— A’

becomes identical with the expression for X at the end of § 78, and the formulee
which it was required to prove are therefore established.

80. The triple integrals in these expressions vanish in the case of a lamellar distri-
bution, in virtue of the equations (IIL.) of §§ 75; and we have simply

[ i 3
Xz—[/’fug(mu- 1) = (ly— na) [dS ] |

dl

[/]‘4’ —(nB— m’J/)—-—(moo lB)}dS: e (X)),

=~[ff 1 (ly na)-d—l—(ns mw}ds

To interpret these expressions, let us assume, for brevity,
U=nB—-my; V=ly—ne; W=me—-8 . . . . . . . . (XL).
From these we deduce
mW—nV =a—{ (le+mB-+ny)=e¢,
nU —-lW=ﬁ—m(lw+mB+n7)=B,}
IV —mU=y—n (la-t-mB-+ny)=y,
where «,, 8, v, denote the rectangular components of the tangential component of the

magnetization at a point infinitely near the surface. Conversely, from these equations
we deduce

(XIL);

U=np—my,; V=ly—ne;; W=me—13,. . . . . . . (XIIL).

Now the direct data required for obtaining the values of X, Y, and Z, by means of
formulee (X.), are simply the values of U, V, W at all points of its surface. Equa-
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tions (XII.) show that with these data the values of «, 8, v, may be calculated ; and
again, equations show conversely that if «, 8, ¥, be given the required data for the
problem may be immediately deduced. We infer that the necessary and sufficient
data for determining the resultant force of a lamellar magnet, at any external point,
by means of formulee (X.), are equivalent to a specification of the direction and mag-
nitude of the tangential component of the intensity of magnetization at every point
infinitely near the surface of the magnet ; and we conclude, as we did in § 78 from a
very different process of reasoning, that besides these data, nothing but that it is
lamellar throughout need be known of the interior distribution.

81. The close analogy which exists between solenoidal and lamellar distributions
of magnetism having led me to the new formulee which have just been given, it
occurred to me that a formula (or formule, if it were necessary here to separate the
cases of internal and external points,) for solenoidal distributions analogous to the
formulee (VIL.) of §§ 77 for lamellar distributions might be discovered. Taking an
analytical view of the problem (the synthetical view, although itself much more obvious,
not showing any very obvious way of arriving at a formula of the desired kind), I

dsS
observed that the formula f w

potential, by a partial integration performed upon factors involving «, 3, ¥, and de-
pending on the integrability of the function adr-+Bdy--yd=, ensured by the equations

B_dy_o dp_de_o de_d5_
dz  dy— dz  de™ dy de™

is deduced from the general expression for the

for a lamellar distribution; and I endeavoured to find a corresponding mode of
treatment for solenoidal distributions, to consist of a partial integration, commencing
still with factors involving «, (3, ¥, but depending now upon the single equation
dee | dB | dy
%4—'@-{-2}:0..(&),
instead of three equations required in the former process. After some fruitless
attempts to connect this equation with the integrability of some function of two in-
dependent variables, I fell upon the following investigation, which exactly answered
my expectations.
82. In virtue of the preceding equation (@), we may assume

dH dG dF dH dG dF
“:@_’JE’ ﬁ—dz an? 7=7Z;—2Z; T (XIV),

where F, G, H are three functions to a certain extent arbitrary, which, as I have
since found, have for their most general expressions

F= ffdd JB dry)+dx
G=/] dxde (’le do) 4 2 b
H ﬂdmdy(m dy +dzJ

202

'S
.

(XV.)




284 PROF. W. THOMSON ON THE MATHEMATICAL THEORY OF MAGNETISM.

where +/ denotes an absolutely arbitrary function ; and the indicated integrations are
indefinite, with the arbitraries which they introduce subject to the equations (XIV.).

' The demonstration of these equations follows immediately from the results obtained
by differentiating the three equations (XIV.) with reference to z, y and = respectively.
The simplest final forms for F, G and H are the following, which are deduced from
the preceding by integration :—

] d
F=/(Bds—ydy)+2%

G=ﬁydx—adz)+% L XV

He=/(udy— pdz)+

-/

Making substitutions according to the formulee (XIV.) for e, 3, ¥ in the general ex-
pression for the potential, we have '

1 1
dv dr
dH _dG dF  dH\"A  rdG dF\ A},
V([ dwdya: { )dz (dz-%)@Jr(%-zy‘)ﬁ;}
Dividing the second member into six terms, and integrating each by parts, com-

mencing upon the factors such as rn dy, we obtain an expression, with a triple inte-

gral involving six terms which destroy one another two and two because of properties
such as

1 1
d dA d dA
dy do— dz dy ’

and besides, a double integral, which may be reduced in the usual manner to a form
involving d8, an element of the surface. “We thus obtain, finally,

dl dl
v=[ /) f | (- nG) +(nF—lH) & >+ (IG—mF)- }ds] . (XVIL)

83. The second member of this equation expresses the potential of a certain distri-
bution of magnetism in an infinitely thin sheet coinciding with the surface of the
body; the total magnetic moment of the magnetism in the area dS being

{(mH—nG)*+ (nF — IH)*+ (IG—mF)*}¥dS,
and its direction cosines proportional to
mH—nG, nF—-IH, [G—mF.
Now we have identically,
{(mH—nG)+m(nF—IH)+n(lG—mF)=0;

and hence the direction of this imaginary magnetization at every point of the surface
is perpendicular to the normal. It follows that we have found a distribution of tan-
gential magnetism in an infinitely thin sheet coinciding with the bounding surface
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which produces the same potential at any point, internal or external, as the given
solenoidal magnet. '

84. The same general conclusion may be arrived at synthetically in a very obvious
manner, by taking into account the property of a solenoid stated in § 71, according
to which it appears that any two solenoids of equal strength, with the same ends,
produce the same force at any point whether in the magnetized substance of either,
or net. For it follows from this, that when a magnet is divisible into solenoids with
their ends on its surface, by joining the two ends of each solenoid by any arbitrary
curve on this surface and laying a solenoid of equal strength along this curve, we
obtain a series of solenoids, constituting by their superposition, a tangential distribu-
tion of magnetism in an infinitely thin sheet coinciding with the bounding surface, .
which produces the same resultant force at any internal or external point as the given
magnet. It is not, however, easy to deduce from this synthesis, a formula involving
the requisite arbitrary functions to express a superficial distribution satisfying the
existing conditions in the most general manner. The analytical investigation given
above, supplies, in reality, a complete solution of this problem. J

It may be remarked that the sole condition which F, G and H, considered as
functions of the coordinates, z, y, z, of some point in the surface of the magnet, and
therefore functions of two independent variables, must satisfy in order that (XVII.)
may express correctly the potential at any point—

dH 4G dF d4H dG dF
(=) +n(G—7)+n(G =5 )=tetmptny, . . (XVIIL),
z,y and z of course being supposed to satisfy the equation to the surface; and it
may be proved, by a demonstration independent of the investigation which has been
given, that the second member of (XVII.) has the same value for any functions F, G,
H whatever, which are subject to this relation.

END OF CHAPTER V.



